Stirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation
نویسندگان
چکیده
Due to their high relative cost, solar-electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaics, but offered at about $1/W, would lead to widespread deployment at residential and commercial sites. This paper addresses the feasibility study of a low-cost solar-thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator collector operation at moderate temperatures, in the range of 120°C to 150°C. This temperature range is consistent with the use of optical concentrators with low-concentration ratios, wide angles of radiation acceptance which are compatible with no diurnal tracking and no or only a few seasonal adjustments. Therefore, costs and reliability hazards associated with tracking hardware systems are avoided. This paper further outlines the design, fabrication, and test results of a single-phase free-piston Stirling engine prototype. A very low loss resonant displacer piston is designed for the system using a very linear magnetic spring. The power piston, which is not mechanically linked to the displacer piston, forms a mass-spring resonating subsystem with the gas spring, and has a resonant frequency matched to that of the displacer. The design of heat exchangers is discussed, with an emphasis on their low fluid friction losses. Only standard low-cost materials and manufacturing methods are required to realize such a machine. The fabricated engine prototype is successfully tested as an engine, and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations. Based on the experimental results and the verified component models, an appropriately dimensioned Stirling engine candidate is discussed. DOI: 10.1115/1.4003144
منابع مشابه
Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation
Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation
متن کاملDesign of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation
This paper focuses on the design of a Stirling engine for distributed solar thermal applications. In particular, we design for the low temperature differential that is attainable with distributed solar collectors and the low cost that is required to be competitive in this space. We will describe how these considerations drive the core design, the methodology for improving the design, and summar...
متن کاملLow-cost distributed solar-thermal-electric power generation
Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity...
متن کاملExergy Analysis and Entropy Generation Minimization of Thermoelectric Waste Heat Recovery for Electronics
Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy con...
متن کاملMulti-objective Optimization of Stirling Heat Engine Using Gray Wolf Optimization Algorithm (TECHNICAL NOTE)
The use of meta-heuristic optimization methods have become quite generic in the past two decades. This paper provides a theoretical investigation to find optimum design parameters of the Stirling heat engines using a recently presented nature-inspired method namely the gray wolf optimization (GWO). This algorithm is utilized for the maximization of the output power/thermal efficiency as well as...
متن کامل